Peanosche Fläche, geschichtet
In einem geeignet gewählten kartesischen Koordinatensystem hat diese Fläche die Gleichung
Der Koordinatenursprung O ist ein Flächenpunkt, an dem sich folgendes Paradoxon studieren laesst: Alle Kurven auf der Fläche, die in Ebenen durch die z-Achse liegen, haben in O ein Maximum, während die Fläche selbst in diesem Punkt kein Maximum besitzt! Im Modell ist zu erkennen, dass in jeder noch so kleinen Umgebung von O stets Flächenpunkte vorhanden sind, die tiefer, aber auch solche, die höher als 0 liegen.
Weitere Informationen zum Objekt finden Sie im Digital Archive of Mathematical Models.
z = -(x^2 - p\cdot y) (x^2 - q\cdot y)
.Der Koordinatenursprung O ist ein Flächenpunkt, an dem sich folgendes Paradoxon studieren laesst: Alle Kurven auf der Fläche, die in Ebenen durch die z-Achse liegen, haben in O ein Maximum, während die Fläche selbst in diesem Punkt kein Maximum besitzt! Im Modell ist zu erkennen, dass in jeder noch so kleinen Umgebung von O stets Flächenpunkte vorhanden sind, die tiefer, aber auch solche, die höher als 0 liegen.
Weitere Informationen zum Objekt finden Sie im Digital Archive of Mathematical Models.
Material und Technik
Sammlung
Abmessungen
B: 22 cm H: 25 cm T: 22 cm G: 350 g
Ort, Datierung
Berlin, 1950er Jahre
Inventarnummer
MM00133
Schlagworte